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1. INTRODUCTION

Let us recall the basic definitions from the previous talks: Let Nilp denote
the category of Z,-algebras where p is nilpotent and let Nilp® denote the full
subcategory consisting of finitely generated Z,-algebras where p is nilpotent.
We also consider the variants Nilp, and Nilpf consisting of those objects
where p? is zero for fixed a € Z>1.

Recall that for A an object of Nilp™ we have topological rings

Aj = A[[T]]
Ay = AT,

where the topology on A4 is such that AX is an open subring, equipped
with the T-adic topology. Let I' = Gal(Qp((p)/Qp) and let € : T' — Z be
the cyclotomic character. We equip our topological rings with an action of
I" determined by

Y1+T) = (1+T)0,

and an action of Frobenius determined by ¢(1+T') = (1 4+ T')P. Recall the
following definitions for objects A of Nilp:

Definition 1.0.1. A rank d étale p-module over A is a rank d projective
A g-module M equipped with a continuous semilinear action of ¢, such that
M is generated by the image of oy : M — M.

Definition 1.0.2. A rank d étale (p,I')-module over A is a rank d projective
A 4-module M equipped with commuting (continuous) semilinear actions of
@ and I', such that M is generated by the image of v : M — M.

We will consider groupoid valued functors

e R4 which sends A € Nilp to the stack of rank d étale ¢-modules
over A and the substack Rggee C Ry consisting of those étale -
modules over A whose underlying module is free fpqc locally on A.

e R which is the restriction of Rg to Nilpt* and similarly R free-

e X, sending A € Nilp to the groupoid of rank d étale (¢, I')-module
over A.
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1.1. Descent. It is not obvious that any of the groupoid valued functors
we have written down are stacks in the fpqc topology. For this we consider
the following result of Drinfeld:

Proposition 1.1.1. The following groupoid valued functors are stacks in
the fpgc topology (and the same results hold with Ay replaced by Aj)

e The stack of finitely generated projective A o -modules

e The stack of projective Aa-modules of rank d

e The stack of finitely generated A s-modules which are fpqc locally free
of rank d

Remark 1.1.2. These results are straightforward to prove for AX if we
restrict to Noetherian rings A and finitely presented faithfully flat maps
A — B. Indeed in that case the induced maps

AT — AL/T"

are faithfully flat for all n, and so we can apply usual faithfully flat descent
results to M/T™ for all n and in fact to the compatible system.

The functor R is justE| the stack of g-equivariant objects of the stack
of projective A 4-modules of rank d, and is therefore a stack in the fqpc
topology. Showing that X, satisfies fpgc descent is slightly more subtle, and
we will discuss it later.

2. REPRESENTABILITY RESULTS FOR STACKS OF ©-MODULES

The main representability result that we will discuss in this section is the
following result of Emerton—Gee

Theorem 2.0.1 (Theorem 1.2.1 of [3]). The stack Ry can be written as a
(countably indexed) inductive limit of finite-type algebraic stacks over Z/p*Z
along closed immersions.

Roughly speaking, we will write it as the union over the ‘substack’ con-
sisting of those étale p-modules admitting a Afg—lattice where the relative
position of Frobenius is ‘bounded’.

2.1. Bounded objects. Let F' € Z,[T] be a polynomial that is congruent
to a positive power of 7' modulo p. Let h € Z>; be an integer, then for
A e Nilp' we define:

Definition 2.1.1. A p-module of F'-height at most h over AX is a a finitely
generated T-torsion free Aj—module M equipped with a -semilinear map
_x whose linearisation

P, go*e//—)///

IThis is not actually true, because of continuity. I don’t know why the the continuity
of war cuts out an algebraic substack.
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is injective with cokernel killed by F”".

We will write Cgy, for the functor on Nilp!* sending A to the groupoid
of ¢-modules of F-height at most h over A} that are moreover projective
modules of rank d over AZ, and Cg’h for its restriction to Nilpflt. We have
the following result of Pappas—Rapoport:

Theorem 2.1.2 (Theorem 4.1.6 of [2], originally Thm. 2.1 (a), Cor. 2.6 of
15]). The stack Cg, is an algebraic stack of finite presented over Z/p*Z with
affine diagonal. Furthermore the morphism Cg}h — R tree s representable
by proper algebraic spaces of finite presentation.

Remark 2.1.3. Let us explain why this morphism is proper: The moduli
spaces of Aj—lattices in A% is given by an ind-proper ind-scheme (the affine
Grassmannian for GLg;). The condition that .# is ¢_y-stable together with
the condition that ¢ s is of F-height at most h give us upper and lower
bounds for .#. So we should expect to land in a finite part of the affine
Grassmannian. [The actual proof is not so simple, since we are not quite
choosing lattices, but lattices up to o-conjugation].

The way Emerton—Gee prove Theorem is by showing that the mor-
phism

cgvh — R

admits a ‘scheme-theoretic image’ which is itself an algebraic stack. They
then show that

lim R, — RY
h

is an isomorphism, which seems very plausible as it is sort of asserting the
(local) existence of A¥-lattices in p-modules over A.

2.2. A brief discussion of scheme-theoretic images of morphisms
of (not necessarily algebraic) stacks. Recall that if f : X — Y is a
quasicompact morphism of schemes, then the scheme-theoretic image of f
is well behaved. This is per definition the smallest closed subscheme Z C Y
such that f: X — Y factors through Z. When f is quasicompact then the
resulting morphism f : X — Z is dominant, see Lemma 01R8 of the stacks
project. When f : Spec B — Spec A corresponding to f# : A — B then
the scheme-theoretic image of f is just just Spec A/ ker f# C Spec A. The
formation of the scheme-theoretic image commutes with flat base change.

Similarly if f : X — Y is a quasicompact morphism of algebraic stacks,
then the scheme-theoretic image of f can be defined as the smallest closed
substack Z C ) through which f factors [This always exists by Lemma
0CPU of the stacks project]. Moreover, the morphism f : X — Z has dense
image on topological spaces, and the formation of scheme-theoretic images
commutes with flat base change.



4 POL VAN HOFTEN

In the situation that we are in f : X — ) will be a quasi-compact
morphism of stacks, where X’ is algebraic and locally of finite presentation,
and where ) will be of finite presentation with representable diagonal of
finite presentation. However ) will not necessarily be algebraic or even
ind-algebraic. In this setting Emerton—Gee define a scheme-theoretic image
Z C Y, which is just a substack. They then prove the following theorem

Theorem 2.2.1 (Theorem 1.1.1 of [3]). Suppose that f : X — Y is proper.
Suppose that Y admits (not necessarily Noetherian) versal rings at all finite
type points, and that Z satisfies the Rim—Schlessinger conditions and admits
effective Noetherian versal rings at all finite type points. Then Z is algebraic.

Versal rings for Rg.p are given by unrestricted framed deformation rings
for Gal(Qp(¢p=)/Qp), which are not necessarily Noetherian. It is explained
in [1] that the versal rings for the scheme-theoretic image R, these corre-
sponds to the ‘finite height’ framed deformation rings of ’

Gal(@p/@?(gpw ))a

which were shown to be Noetherian in work of Kim [4]. The real difficulty
then, is to prove effectivity, which is something we will not discuss here. The
upshot of this is that we get the following result:

Theorem 2.2.2 (Corollary 4.2.3 of [2]). The stack Rq is a limit preserv-
ing Ind-algebraic stack, whose diagonal is representable by algebraic spaces,
affine and of finite presentation.

3. REPRESENTABILITY RESULTS FOR STACKS OF (¢, I')-MODULES

The main theorem that we are going to prove today is the following, where
we let X7 be the restriction of Xy to Nilpft,

Theorem 3.0.1 (Proposition 3.4.12 of [1]). The stack X} can be written as a
(countably indexed) inductive limit of algebraic spaces of finite presentation
over Z/p*Z, with transition maps given by closed immersions. Moreover
the diagonal of Xy is representable by algebraic spaces, affine and of finite
presentation.

The difficulty in deducing this from Theorem is with the continuity
assumption on the I'-action. Indeed, choose a topological generator v € T’
and let Igisc C I' be the subgroup it generates. Then we define an étale
(¢, Tgise)-module over A € Nilp® to be an étale (¢)-module over A equipped
with a semilinear action of I'gis.. Let Rgd‘“ be the stack on Nilpft sending
A to the groupoid of étale (¢, I'gisc)-modules over A.

Let v« : Rq — Rgq be the functor which takes an étale p-module over A
and pulls it back along v : Aq — A 4. It follows from the definitions of the
stacky fiber product that the stack Rgdisc can be identified with the fiber
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product

Rgdisc s Rd

l lrw

RdéRdXRd

where A is the diagonal morphism and I, is the graph of +. Since the fiber
product of algebraic stacks is again algebraic, the fiber product of (countably
indexed) Ind-algebraic stacks is again a (countably indexed) Ind-algebraic
stack.

There is a natural morphism X — RY which takes an étale (¢, I')-module
over A and sends it to the underlying étale (¢, I'gisc)-module over A. Since
Tgise is dense in I', this morphism is a monomorphism, i.e., fully faith-
ful on A-points. Unfortunately, it isn’t true that it is a closed (or open)
substack, and therefore we are no closer to proving that X; is an Ind-
algebraic stack. The following lemma gives equivalent conditions for an
étale (¢, I'gisc)-module over A to arise from an étale (¢, I')-module over A.

Lemma 3.0.2. The following are equivalent for an étale (¢, T qisc)-module
over A, where A is a Z/p*Z-algebra

The action of I'gisc extends to a continuous action of I'.
The action of v on M ®gz,paz ), is topologically nilpotent.
There is a Aj-latticeﬂ M C M and s € Z>qo such that

(W - 1) CTM.
For any A’ -lattice .4/ C M there is an s € Z>o such that
(W 1) CTM.

It now follows that X is actually a stack in the fpqc topology, because
the last condition can be checked fpqc locally. [At least, this is how I think
of it, in [2] it is said that the fact that X is a stack is a consequence of the
descent results of Drinfeld.]

3.1. Weak Wach modules. To prove our Ind-representability results for
Xy, we use a similar trick to the one in our proof of the Ind-representability

of Ry.

Definition 3.1.1. Let A € Nilp™ and let s,h € Z>p. Then a weak Wach-
module of height < h and level < s over A to be a projective rank d étale
¢-module .7 of F-height at most h over A{ together with a semilinear action
of Tgisc on M = #[1/T) satisfying (v*" — 1)/ C T#. We will write Wy, s
for the stack on Nilp™ sending A to the groupoid of weak Wach-modules of
height < h and level < s over A.

2This means a finitely generated A -submodule which generates M as an A -module.



6 POL VAN HOFTEN

There is a natural monomorphism
Wah,s = Rgdi“ XRy Cah,
because the right hand side is the moduli stack of Weak Wach modules of
height < h (but with no condition on the level).

Proposition 3.1.2. For each s this morphism is representable by a closed
immersion of finite presentation. In particular for s > s’ the natural map

Wi h,s = Wa,h,s
are closed immersions of finite presentation.

The proof of this Proposition comes down to showing that the condition
for the y-action to satisfy

(VW' — 1)t CT M

is cut out by finitely many equations, which happens in Proposition 3.3.5 of
[1].

3.2. Proof of Theorem We define Wy, = ligs Wan. This is an
Ind-algebraic stack whose A-points can be identified with the groupoid of
étale o-modules . of F-height at most h over Az together with a continuous
semilinear action of I" on M = .#[1/T).

Note that there is a natural morphism Wg; — X, which just takes .#
and sends it to M = #[1/T] equipped with the Frobenius induced from
A and its continuous I'-action. Per definition there is a 2-fiber product
diagram

LCai
Wd,h — Rdd XR, Cd,h

| |

Tai
_—
X, R aise

Now if h < k' there is a closed immersion Cqp — Cqps compatible with the
map to Ry; this induces closed immersions

Wan = Wa,n
compatible with the map to X. In particular there is an induced morphism

@Wdﬁ — Xy — 'Rgdi“.
h

We now define X dhs tO be the scheme-theoretic image of Winhs = Rgd‘“.
[Here we don’t need any complicated definition of the scheme-theoretic image
since the source is algebraic and the target is Ind-algebraic.] We now need
to show that X7, _ is a closed substack of X7 rather than just of Rgdi“. To
be precise, we need to show that XC‘;’ hs 1S a substack of A$. This is more
subtle than you might think, and is carried out in Lemma 3.4.9 of [1]. [By
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definition of the scheme-theoretic image, we know that Xy, (A4) C X7 (A)
for Artin local A, so we need to show that a certain I'g.-action extends to
a D-action on an étale (¢, T')-module over an object in Nilp' if it so extends
for all Artin local quotients.]

Finally, we need to show that
@Xih,s = Xq.
h,s

This last statement comes down to surjectivity, which just means that an
étale (¢, I')-module M over A admits a A’-lattice with good properties, étale
locally on A. This is straightforward to do when M is a free A4 module,
and Emerton—Gee reduce to this case in their proof (see Proposition 3.4.10
of [1]).
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