

WACH MODULES AND IND-ALGEBRAICITY OF THE EMERTON–GEE STACK

POL VAN HOFSEN

1. INTRODUCTION

Let us recall the basic definitions from the previous talks: Let Nilp denote the category of \mathbb{Z}_p -algebras where p is nilpotent and let Nilp^{ft} denote the full subcategory consisting of finitely generated \mathbb{Z}_p -algebras where p is nilpotent. We also consider the variants Nilp_a and $\text{Nilp}_a^{\text{ft}}$ consisting of those objects where p^a is zero for fixed $a \in \mathbb{Z}_{\geq 1}$.

Recall that for A an object of Nilp^{ft} we have topological rings

$$\begin{aligned}\mathbb{A}_A^+ &= A[[T]] \\ \mathbb{A}_A &= A[[T]][T^{-1}],\end{aligned}$$

where the topology on \mathbb{A}_A is such that \mathbb{A}_A^+ is an open subring, equipped with the T -adic topology. Let $\Gamma = \text{Gal}(\mathbb{Q}_p(\zeta_{p^\infty})/\mathbb{Q}_p)$ and let $\epsilon : \Gamma \rightarrow \mathbb{Z}_p^\times$ be the cyclotomic character. We equip our topological rings with an action of Γ determined by

$$\gamma(1+T) = (1+T)^{\epsilon(\gamma)},$$

and an action of Frobenius determined by $\varphi(1+T) = (1+T)^p$. Recall the following definitions for objects A of Nilp^{ft} :

Definition 1.0.1. A rank d étale φ -module over A is a rank d projective \mathbb{A}_A -module M equipped with a continuous semilinear action of φ , such that M is generated by the image of $\varphi_M : M \rightarrow M$.

Definition 1.0.2. A rank d étale (φ, Γ) -module over A is a rank d projective \mathbb{A}_A -module M equipped with commuting (continuous) semilinear actions of φ and Γ , such that M is generated by the image of $\varphi_M : M \rightarrow M$.

We will consider groupoid valued functors

- \mathcal{R}_d which sends $A \in \text{Nilp}^{\text{ft}}$ to the stack of rank d étale φ -modules over A and the substack $\mathcal{R}_{d,\text{free}} \subset \mathcal{R}_d$ consisting of those étale φ -modules over A whose underlying module is free fpqc locally on A .
- \mathcal{R}_d^a which is the restriction of \mathcal{R}_d to $\text{Nilp}_a^{\text{ft}}$ and similarly $\mathcal{R}_{d,\text{free}}^a$.
- \mathcal{X}_d sending $A \in \text{Nilp}$ to the groupoid of rank d étale (φ, Γ) -module over A .

1.1. Descent. It is not obvious that any of the groupoid valued functors we have written down are stacks in the fpqc topology. For this we consider the following result of Drinfeld:

Proposition 1.1.1. *The following groupoid valued functors are stacks in the fpqc topology (and the same results hold with \mathbb{A}_A replaced by \mathbb{A}_A^+)*

- *The stack of finitely generated projective \mathbb{A}_A -modules*
- *The stack of projective \mathbb{A}_A -modules of rank d*
- *The stack of finitely generated \mathbb{A}_A -modules which are fpqc locally free of rank d*

Remark 1.1.2. These results are straightforward to prove for \mathbb{A}_A^+ if we restrict to Noetherian rings A and finitely presented faithfully flat maps $A \rightarrow B$. Indeed in that case the induced maps

$$\mathbb{A}_A^+/T^n \rightarrow \mathbb{A}_B^+/T^n$$

are faithfully flat for all n , and so we can apply usual faithfully flat descent results to M/T^n for all n and in fact to the compatible system.

The functor \mathcal{R}_d^a is just¹ the stack of φ -equivariant objects of the stack of projective \mathbb{A}_A -modules of rank d , and is therefore a stack in the fpqc topology. Showing that \mathcal{X}_d satisfies fpqc descent is slightly more subtle, and we will discuss it later.

2. REPRESENTABILITY RESULTS FOR STACKS OF φ -MODULES

The main representability result that we will discuss in this section is the following result of Emerton–Gee

Theorem 2.0.1 (Theorem 1.2.1 of [3]). *The stack \mathcal{R}_d^a can be written as a (countably indexed) inductive limit of finite-type algebraic stacks over $\mathbb{Z}/p^a\mathbb{Z}$ along closed immersions.*

Roughly speaking, we will write it as the union over the ‘substack’ consisting of those étale φ -modules admitting a \mathbb{A}_A^+ -lattice where the relative position of Frobenius is ‘bounded’.

2.1. Bounded objects. Let $F \in \mathbb{Z}_p[T]$ be a polynomial that is congruent to a positive power of T modulo p . Let $h \in \mathbb{Z}_{\geq 1}$ be an integer, then for $A \in \text{Nilp}^{\text{ft}}$ we define:

Definition 2.1.1. A φ -module of F -height at most h over \mathbb{A}_A^+ is a a finitely generated T -torsion free \mathbb{A}_A^+ -module \mathcal{M} equipped with a φ -semilinear map $\varphi_{\mathcal{M}}$ whose linearisation

$$\Phi_{\mathcal{M}} : \varphi^* \mathcal{M} \rightarrow \mathcal{M}$$

¹This is not actually true, because of continuity. I don’t know why the the continuity of φ_M cuts out an algebraic substack.

is injective with cokernel killed by F^h .

We will write $\mathcal{C}_{d,h}$ for the functor on Nilp^{ft} sending A to the groupoid of φ -modules of F -height at most h over \mathbb{A}_A^+ that are moreover projective modules of rank d over \mathbb{A}_A^+ , and $\mathcal{C}_{d,h}^a$ for its restriction to $\text{Nilp}_a^{\text{ft}}$. We have the following result of Pappas–Rapoport:

Theorem 2.1.2 (Theorem 4.1.6 of [2], originally Thm. 2.1 (a), Cor. 2.6 of [5]). *The stack $\mathcal{C}_{d,h}^a$ is an algebraic stack of finite presented over $\mathbb{Z}/p^a\mathbb{Z}$ with affine diagonal. Furthermore the morphism $\mathcal{C}_{d,h}^a \rightarrow \mathcal{R}_{d,\text{free}}^a$ is representable by proper algebraic spaces of finite presentation.*

Remark 2.1.3. Let us explain why this morphism is proper: The moduli spaces of \mathbb{A}_A^+ -lattices in \mathbb{A}_A^d is given by an ind-proper ind-scheme (the affine Grassmannian for GL_d). The condition that \mathcal{M} is $\varphi_{\mathcal{M}}$ -stable together with the condition that $\varphi_{\mathcal{M}}$ is of F -height at most h give us upper and lower bounds for \mathcal{M} . So we should expect to land in a finite part of the affine Grassmannian. [The actual proof is not so simple, since we are not quite choosing lattices, but lattices up to σ -conjugation].

The way Emerton–Gee prove Theorem 2.0.1 is by showing that the morphism

$$\mathcal{C}_{d,h}^a \rightarrow \mathcal{R}_d^a$$

admits a ‘scheme-theoretic image’ which is itself an algebraic stack. They then show that

$$\varinjlim_h \mathcal{R}_{d,h}^a \rightarrow \mathcal{R}_d^a$$

is an isomorphism, which seems very plausible as it is sort of asserting the (local) existence of \mathbb{A}_A^+ -lattices in φ -modules over A .

2.2. A brief discussion of scheme-theoretic images of morphisms of (not necessarily algebraic) stacks. Recall that if $f : X \rightarrow Y$ is a quasicompact morphism of schemes, then the scheme-theoretic image of f is well behaved. This is per definition the smallest closed subscheme $Z \subset Y$ such that $f : X \rightarrow Y$ factors through Z . When f is quasicompact then the resulting morphism $f : X \rightarrow Z$ is dominant, see Lemma 01R8 of the stacks project. When $f : \text{Spec } B \rightarrow \text{Spec } A$ corresponding to $f^\sharp : A \rightarrow B$ then the scheme-theoretic image of f is just $\text{Spec } A/\ker f^\sharp \subset \text{Spec } A$. The formation of the scheme-theoretic image commutes with flat base change.

Similarly if $f : \mathcal{X} \rightarrow \mathcal{Y}$ is a quasicompact morphism of algebraic stacks, then the scheme-theoretic image of f can be defined as the smallest closed substack $\mathcal{Z} \subset \mathcal{Y}$ through which f factors [This always exists by Lemma 0CPU of the stacks project]. Moreover, the morphism $f : \mathcal{X} \rightarrow \mathcal{Z}$ has dense image on topological spaces, and the formation of scheme-theoretic images commutes with flat base change.

In the situation that we are in $f : \mathcal{X} \rightarrow \mathcal{Y}$ will be a quasi-compact morphism of stacks, where \mathcal{X} is algebraic and locally of finite presentation, and where \mathcal{Y} will be of finite presentation with representable diagonal of finite presentation. However \mathcal{Y} will not necessarily be algebraic or even ind-algebraic. In this setting Emerton–Gee define a scheme-theoretic image $\mathcal{Z} \subset \mathcal{Y}$, which is just a substack. They then prove the following theorem

Theorem 2.2.1 (Theorem 1.1.1 of [3]). *Suppose that $f : \mathcal{X} \rightarrow \mathcal{Y}$ is proper. Suppose that \mathcal{Y} admits (not necessarily Noetherian) versal rings at all finite type points, and that \mathcal{Z} satisfies the Rim–Schlessinger conditions and admits effective Noetherian versal rings at all finite type points. Then \mathcal{Z} is algebraic.*

Versal rings for $\mathcal{R}_{d,h}^a$ are given by unrestricted framed deformation rings for $\text{Gal}(\overline{\mathbb{Q}}_p(\zeta_{p^\infty})/\mathbb{Q}_p)$, which are not necessarily Noetherian. It is explained in [1] that the versal rings for the scheme-theoretic image $\mathcal{R}_{d,h}^a$ these corresponds to the ‘finite height’ framed deformation rings of

$$\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p(\zeta_{p^\infty})),$$

which were shown to be Noetherian in work of Kim [4]. The real difficulty then, is to prove effectivity, which is something we will not discuss here. The upshot of this is that we get the following result:

Theorem 2.2.2 (Corollary 4.2.3 of [2]). *The stack \mathcal{R}_d is a limit preserving Ind-algebraic stack, whose diagonal is representable by algebraic spaces, affine and of finite presentation.*

3. REPRESENTABILITY RESULTS FOR STACKS OF (φ, Γ) -MODULES

The main theorem that we are going to prove today is the following, where we let \mathcal{X}_d^a be the restriction of \mathcal{X}_d to $\text{Nilp}_a^{\text{ft}}$.

Theorem 3.0.1 (Proposition 3.4.12 of [1]). *The stack \mathcal{X}_d^a can be written as a (countably indexed) inductive limit of algebraic spaces of finite presentation over $\mathbb{Z}/p^a\mathbb{Z}$, with transition maps given by closed immersions. Moreover the diagonal of \mathcal{X}_d is representable by algebraic spaces, affine and of finite presentation.*

The difficulty in deducing this from Theorem 2.2.2 is with the continuity assumption on the Γ -action. Indeed, choose a topological generator $\gamma \in \Gamma$ and let $\Gamma_{\text{disc}} \subset \Gamma$ be the subgroup it generates. Then we define an étale $(\varphi, \Gamma_{\text{disc}})$ -module over $A \in \text{Nilp}^{\text{ft}}$ to be an étale (φ) -module over A equipped with a semilinear action of Γ_{disc} . Let $\mathcal{R}_d^{\Gamma_{\text{disc}}}$ be the stack on Nilp^{ft} sending A to the groupoid of étale $(\varphi, \Gamma_{\text{disc}})$ -modules over A .

Let $\gamma_* : \mathcal{R}_d \rightarrow \mathcal{R}_d$ be the functor which takes an étale φ -module over A and pulls it back along $\gamma : \mathbb{A}_A \rightarrow \mathbb{A}_A$. It follows from the definitions of the stacky fiber product that the stack $\mathcal{R}_d^{\Gamma_{\text{disc}}}$ can be identified with the fiber

product

$$\begin{array}{ccc} \mathcal{R}_d^{\Gamma_{\text{disc}}} & \longrightarrow & \mathcal{R}_d \\ \downarrow & & \downarrow \Gamma_\gamma \\ \mathcal{R}_d & \xrightarrow{\Delta} & \mathcal{R}_d \times \mathcal{R}_d \end{array}$$

where Δ is the diagonal morphism and Γ_γ is the graph of γ . Since the fiber product of algebraic stacks is again algebraic, the fiber product of (countably indexed) Ind-algebraic stacks is again a (countably indexed) Ind-algebraic stack.

There is a natural morphism $\mathcal{X}_d \rightarrow \mathcal{R}_d^\Gamma$ which takes an étale (φ, Γ) -module over A and sends it to the underlying étale $(\varphi, \Gamma_{\text{disc}})$ -module over A . Since Γ_{disc} is dense in Γ , this morphism is a monomorphism, i.e., fully faithful on A -points. Unfortunately, it isn't true that it is a closed (or open) substack, and therefore we are no closer to proving that \mathcal{X}_d is an Ind-algebraic stack. The following lemma gives equivalent conditions for an étale $(\varphi, \Gamma_{\text{disc}})$ -module over A to arise from an étale (φ, Γ) -module over A .

Lemma 3.0.2. *The following are equivalent for an étale $(\varphi, \Gamma_{\text{disc}})$ -module over A , where A is a $\mathbb{Z}/p^a\mathbb{Z}$ -algebra*

- The action of Γ_{disc} extends to a continuous action of Γ .
- The action of γ on $M \otimes_{\mathbb{Z}/p^a\mathbb{Z}} \mathbb{F}_p$ is topologically nilpotent.
- There is a \mathbb{A}_A^+ -lattice² $\mathcal{M} \subset M$ and $s \in \mathbb{Z}_{\geq 0}$ such that

$$(\gamma^{p^s} - 1)\mathcal{M} \subset T\mathcal{M}.$$

- For any \mathbb{A}_A^+ -lattice $\mathcal{M} \subset M$ there is an $s \in \mathbb{Z}_{\geq 0}$ such that

$$(\gamma^{p^s} - 1)\mathcal{M} \subset T\mathcal{M}.$$

It now follows that \mathcal{X}_d is actually a stack in the fpqc topology, because the last condition can be checked fpqc locally. [At least, this is how I think of it, in [2] it is said that the fact that \mathcal{X}_d is a stack is a consequence of the descent results of Drinfeld.]

3.1. Weak Wach modules. To prove our Ind-representability results for \mathcal{X}_d , we use a similar trick to the one in our proof of the Ind-representability of \mathcal{R}_d .

Definition 3.1.1. Let $A \in \text{Nilp}^{\text{ft}}$ and let $s, h \in \mathbb{Z}_{\geq 0}$. Then a *weak Wach-module* of height $\leq h$ and level $\leq s$ over A to be a projective rank d étale φ -module \mathcal{M} of F -height at most h over \mathbb{A}_A^+ together with a semilinear action of Γ_{disc} on $M = \mathcal{M}[1/T]$ satisfying $(\gamma^{p^s} - 1)\mathcal{M} \subset T\mathcal{M}$. We will write $\mathcal{W}_{d,h,s}$ for the stack on Nilp^{ft} sending A to the groupoid of weak Wach-modules of height $\leq h$ and level $\leq s$ over A .

²This means a finitely generated \mathbb{A}_A^+ -submodule which generates M as an \mathbb{A}_A -module.

There is a natural monomorphism

$$\mathcal{W}_{d,h,s} \rightarrow \mathcal{R}_d^{\Gamma_{\text{disc}}} \times_{\mathcal{R}_d} \mathcal{C}_{d,h},$$

because the right hand side is the moduli stack of Weak Wach modules of height $\leq h$ (but with no condition on the level).

Proposition 3.1.2. *For each s this morphism is representable by a closed immersion of finite presentation. In particular for $s \geq s'$ the natural map*

$$\mathcal{W}_{d,h,s} \rightarrow \mathcal{W}_{d,h,s'}$$

are closed immersions of finite presentation.

The proof of this Proposition comes down to showing that the condition for the γ -action to satisfy

$$(\gamma^{p^s} - 1)\mathcal{M} \subset T\mathcal{M}$$

is cut out by finitely many equations, which happens in Proposition 3.3.5 of [1].

3.2. Proof of Theorem 3.0.1. We define $\mathcal{W}_{d,h} := \varinjlim_s \mathcal{W}_{d,h}$. This is an Ind-algebraic stack whose A -points can be identified with the groupoid of étale φ -modules \mathcal{M} of F -height at most h over \mathbb{A}_A^+ together with a continuous semilinear action of Γ on $M = \mathcal{M}[1/T]$.

Note that there is a natural morphism $\mathcal{W}_{d,h} \rightarrow \mathcal{X}_d$ which just takes \mathcal{M} and sends it to $M = \mathcal{M}[1/T]$ equipped with the Frobenius induced from \mathcal{M} and its continuous Γ -action. Per definition there is a 2-fiber product diagram

$$\begin{array}{ccc} \mathcal{W}_{d,h} & \longrightarrow & \mathcal{R}_d^{\Gamma_{\text{disc}}} \times_{\mathcal{R}_d} \mathcal{C}_{d,h} \\ \downarrow & & \downarrow \\ \mathcal{X}_d & \longrightarrow & \mathcal{R}_d^{\Gamma_{\text{disc}}} \end{array}$$

Now if $h \leq h'$ there is a closed immersion $\mathcal{C}_{d,h} \rightarrow \mathcal{C}_{d,h'}$ compatible with the map to \mathcal{R}_d ; this induces closed immersions

$$\mathcal{W}_{d,h} \rightarrow \mathcal{W}_{d,h'}$$

compatible with the map to \mathcal{X}_d . In particular there is an induced morphism

$$\varinjlim_h \mathcal{W}_{d,h} \rightarrow \mathcal{X}_d \rightarrow \mathcal{R}_d^{\Gamma_{\text{disc}}}.$$

We now define $\mathcal{X}_{d,h,s}^a$ to be the scheme-theoretic image of $\mathcal{W}_{d,h,s}^a \rightarrow \mathcal{R}_d^{\Gamma_{\text{disc}}}$. [Here we don't need any complicated definition of the scheme-theoretic image since the source is algebraic and the target is Ind-algebraic.] We now need to show that $\mathcal{X}_{d,h,s}^a$ is a closed substack of \mathcal{X}_d^a rather than just of $\mathcal{R}_d^{\Gamma_{\text{disc}}}$. To be precise, we need to show that $\mathcal{X}_{d,h,s}^a$ is a substack of \mathcal{X}_d^a . This is more subtle than you might think, and is carried out in Lemma 3.4.9 of [1]. [By

definition of the scheme-theoretic image, we know that $\mathcal{X}_{d,h,s}^a(A) \subset \mathcal{X}_d^a(A)$ for Artin local A , so we need to show that a certain Γ_{disc} -action extends to a Γ -action on an étale (φ, Γ) -module over an object in Nilp^{ft} if it so extends for all Artin local quotients.]

Finally, we need to show that

$$\varinjlim_{h,s} \mathcal{X}_{d,h,s}^a = \mathcal{X}_d.$$

This last statement comes down to surjectivity, which just means that an étale (φ, Γ) -module M over A admits a \mathbb{A}_A^+ -lattice with good properties, étale locally on A . This is straightforward to do when M is a free \mathbb{A}_A module, and Emerton–Gee reduce to this case in their proof (see Proposition 3.4.10 of [1]).

REFERENCES

- [1] Matthew Emerton and Toby Gee, *Moduli stacks of étale (phi, Gamma)-modules and the existence of crystalline lifts*, arXiv e-prints (August 2019), available at 1908.07185.
- [2] ———, *Moduli stacks of (phi, Gamma)-modules: a survey*, arXiv e-prints (December 2020), available at 2012.12719.
- [3] Matthew Emerton and Toby Gee, ‘Scheme-theoretic images’ of morphisms of stacks, *Algebr. Geom.* **8** (2021), no. 1, 1–132. MR4174286
- [4] Wansu Kim, *Galois deformation theory for norm fields and flat deformation rings*, *J. Number Theory* **131** (2011), no. 7, 1258–1275. MR2782840
- [5] G. Pappas and M. Rapoport, Φ -modules and coefficient spaces, *Mosc. Math. J.* **9** (2009), no. 3, 625–663, back matter. MR2562795